

Underlined words and phrases are to be filled in by students on the Note-taking Worksheet

Describing Motion Section 1

- A. Motion—when an object changes its position relative to a reference point
 - 1. Distance—how far an object has moved
 - 2. Displacement—distance and direction of an object's change of position from a starting point
- B. Speed—distance an object travels per unit of time
 - 1. Rate—any change over time
 - **2.** Calculation for speed: *speed = distance/<u>time</u>*
 - 3. Speed that doesn't change over time—constant speed
 - 4. Speed is usually not constant; usually an object has changing speed.
 - 5. Average speed—speed of motion when speed is changing: speed = total <u>distance</u>/total travel time
 - 6. Instantaneous speed—speed at any given point in time
- C. A distance-time graph displays motion of an object over time.
 - 1. Plot distance on a(n) vertical axis.
 - 2. Plot time on a(n) horizontal axis.
- D. Velocity—speed and direction of an object's motion
- E. Motion of Earth's crust—so slow we don't notice

Discussion Ouestion.

How do constant speed and changing speed differ? At constant speed, an object's instantaneous speed remains the same; at changing speed, an object's instantaneous speed varies.

Motion

Underlined words and phrases are to be filled in by students on the Note-taking Worksheet

Section 2 Acceleration

- A. Acceleration—change in velocity's rate
 - 1. Positive acceleration—speed is increasing.
 - 2. Negative acceleration—speed is decreasing.
 - 3. When an object changes speed or direction, it is accelerating.
- B. Calculating acceleration
 - 1. Acceleration = change in velocity/time
 - **2.** Change in velocity = $\underline{\text{final velocity}}$ initial velocity
 - 3. Unit for acceleration—meters per second squared
 - **4.** Positive acceleration—positive number with a <u>positive</u> slope on a velocity-time graph
 - **5.** Negative acceleration—negative number with a <u>negative</u> slope on a velocity-time graph
- C. Amusement park acceleration—Roller coasters
 - 1. Changes in speed cause acceleration.
 - 2. Changes in direction cause acceleration.

Discussion Question.

Is a wooden roller coaster's swaying acceleration? Why or why not? Yes, swaying is a change in direction.

Motion

Underlined words and phrases are to be filled in by students on the Note-taking Worksheet.

Section 3 Motion and Forces

- A. Force—a push or pull that one body applies to another
 - 1. A force can cause an object's motion to change.
 - 2. When two or more forces combine at the same time, they create a net force.
 - 3. Balanced forces are equal in size and opposite in direction.
 - 4. <u>Unbalanced forces</u> are unequal in size and / or are not in the same direction.
- B. Inertia and Mass
 - 1. Inertia—an object's resistance to any change in motion
 - 2. Objects with greater mass have greater inertia.
 - 3. Newton's <u>first law of motion</u>—an object moving at a constant velocity keeps moving at that velocity unless a net force acts on it; an object at rest will stay at rest unless a net force acts on it.
- C. Auto crashes—the law of inertia at work
 - 1. A passenger not wearing a seat belt keeps moving <u>forward</u> at the car's speed even after the car stops.
 - 2. A passenger wearing a seat belt slows down as the car slows down and stops.

Discussion Question.

Why does it take more force to pick up a glass full of water than it does a same-sized empty glass? A full glass has greater mass.